Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Allergy Clin Immunol Glob ; 2(2): 100091, 2023 May.
Article in English | MEDLINE | ID: covidwho-2290697

ABSTRACT

Background: Immunodeficient patients (IDPs) are at higher risk of contracting severe coronavirus disease 2019 (COVID-19). Targeted vaccination strategies have been implemented to enhance vaccine-induced protection. In this population, however, clinical effectiveness is variable and the duration of protection unknown. Objective: We sought to better understand the cellular and humoral immune responses to mRNA and adenoviral vectored COVID-19 vaccines in patients with immunodeficiency. Methods: Immune responses to severe acute respiratory syndrome coronavirus 2 spike were assessed after 2 doses of homologous ChAdOx1-nCoV-19 or BNT162b2 vaccines in 112 infection-naive IDPs and 131 healthy health care workers as controls. Predictors of vaccine responsiveness were investigated. Results: Immune responses to vaccination were low, and virus neutralization by antibody was not detected despite high titer binding responses in many IDPs. In those exhibiting response, the frequency of specific T-cell responses in IDPs was similar to controls, while antibody responses were lower. Sustained vaccine specific differences were identified: T-cell responses were greater in ChAdOx1-nCoV-19- compared to BNT162b2-immunized IDPs, and antibody binding and neutralization were greater in all cohorts immunized with BNT162b2. The positive correlation between T-cell and antibody responses was weak and increased with subsequent vaccination. Conclusion: Immunodeficient patients have impaired immune responses to mRNA and viral vector COVID-19 vaccines that appear to be influenced by vaccine formulation. Understanding the relative roles of T-cell- and antibody-mediated protection as well as the potential of heterologous prime and boost immunization protocols is needed to optimize the vaccination approach in these high-risk groups.

2.
Frontiers in immunology ; 14, 2023.
Article in English | EuropePMC | ID: covidwho-2253824

ABSTRACT

The accelerated development of the first generation COVID-19 vaccines has saved millions of lives, and potentially more from the long-term sequelae of SARS-CoV-2 infection. The most successful vaccine candidates have used the full-length SARS-CoV-2 spike protein as an immunogen. As expected of RNA viruses, new variants have evolved and quickly replaced the original wild-type SARS-CoV-2, leading to escape from natural infection or vaccine induced immunity provided by the original SARS-CoV-2 spike sequence. Next generation vaccines that confer specific and targeted immunity to broadly neutralising epitopes on the SARS-CoV-2 spike protein against different variants of concern (VOC) offer an advance on current booster shots of previously used vaccines. Here, we present a targeted approach to elicit antibodies that neutralise both the ancestral SARS-CoV-2, and the VOCs, by introducing a specific glycosylation site on a non-neutralising epitope of the RBD. The addition of a specific glycosylation site in the RBD based vaccine candidate focused the immune response towards other broadly neutralising epitopes on the RBD. We further observed enhanced cross-neutralisation and cross-binding using a DNA-MVA CR19 prime-boost regime, thus demonstrating the superiority of the glycan engineered RBD vaccine candidate across two platforms and a promising candidate as a broad variant booster vaccine.

3.
The journal of allergy and clinical immunology Global ; 2023.
Article in English | EuropePMC | ID: covidwho-2248236

ABSTRACT

Background Immunodeficient patients (IDPs) are at higher risk of contracting severe COVID-19 disease. Targeted vaccination strategies have been implemented to enhance vaccine-induced protection. In this population however, clinical effectiveness is variable and duration of protection unknown. Objective To understand the cellular and humoral immune responses to mRNA and adenoviral vectored COVID-19 vaccines in patients with immunodeficiency. Methods Immune responses to SARS-COV-2 spike were assessed after two doses of homologous ChAdOx1-nCoV-19 or BNT162b2 vaccines in 112 infection-naïve IDPs and 131 healthy health care workers (HCWs) as controls. Predictors of vaccine responsiveness were investigated. Results Immune responses to vaccination were low, and viral neutralisation by antibody not detected despite high titre binding responses in many IDPs. In those responding, the frequency of specific T-cell responses in IDPs was similar to controls whilst antibody responses were lower. Sustained vaccine specific differences were identified: T-cell responses were greater in ChAdOx1-nCoV-19 compared with BNT162b2 immunised IDPs and antibody binding and neutralisation was greater in all cohorts immunised with BNT162b2. The positive correlation between T-cell and antibody responses was weak and increased with subsequent vaccination. Conclusion Immunodeficient patients have impaired immune responses to mRNA and viral vector COVID-19 vaccines that appear influenced by vaccine formulation. Understanding the relative roles of T-cell and antibody mediated protection and potential of heterologous prime and boost immunization protocols is needed to optimise the vaccination approach in these high-risk groups. We demonstrate impaired T-cell and B-cell responses to SARS-CoV-2 vaccination in immunodeficient patients compared with the healthy population and highlight the need for tailoring booster vaccine approaches for immunodeficient individuals.

4.
Front Immunol ; 14: 1118523, 2023.
Article in English | MEDLINE | ID: covidwho-2253825

ABSTRACT

The accelerated development of the first generation COVID-19 vaccines has saved millions of lives, and potentially more from the long-term sequelae of SARS-CoV-2 infection. The most successful vaccine candidates have used the full-length SARS-CoV-2 spike protein as an immunogen. As expected of RNA viruses, new variants have evolved and quickly replaced the original wild-type SARS-CoV-2, leading to escape from natural infection or vaccine induced immunity provided by the original SARS-CoV-2 spike sequence. Next generation vaccines that confer specific and targeted immunity to broadly neutralising epitopes on the SARS-CoV-2 spike protein against different variants of concern (VOC) offer an advance on current booster shots of previously used vaccines. Here, we present a targeted approach to elicit antibodies that neutralise both the ancestral SARS-CoV-2, and the VOCs, by introducing a specific glycosylation site on a non-neutralising epitope of the RBD. The addition of a specific glycosylation site in the RBD based vaccine candidate focused the immune response towards other broadly neutralising epitopes on the RBD. We further observed enhanced cross-neutralisation and cross-binding using a DNA-MVA CR19 prime-boost regime, thus demonstrating the superiority of the glycan engineered RBD vaccine candidate across two platforms and a promising candidate as a broad variant booster vaccine.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Epitopes , COVID-19 Vaccines , Polysaccharides , Antibodies, Neutralizing
6.
J Virol ; 95(15): e0020321, 2021 07 12.
Article in English | MEDLINE | ID: covidwho-1305505

ABSTRACT

The majority of SARS-CoV-2 vaccines in use or advanced development are based on the viral spike protein (S) as their immunogen. S is present on virions as prefusion trimers in which the receptor binding domain (RBD) is stochastically open or closed. Neutralizing antibodies have been described against both open and closed conformations. The long-term success of vaccination strategies depends upon inducing antibodies that provide long-lasting broad immunity against evolving SARS-CoV-2 strains. Here, we have assessed the results of immunization in a mouse model using an S protein trimer stabilized in the closed state to prevent full exposure of the receptor binding site and therefore interaction with the receptor. We compared this with other modified S protein constructs, including representatives used in current vaccines. We found that all trimeric S proteins induced a T cell response and long-lived, strongly neutralizing antibody responses against 2019 SARS-CoV-2 and variants of concern P.1 and B.1.351. Notably, the protein binding properties of sera induced by the closed spike differed from those induced by standard S protein constructs. Closed S proteins induced more potent neutralizing responses than expected based on the degree to which they inhibit interactions between the RBD and ACE2. These observations suggest that closed spikes recruit different, but equally potent, immune responses than open spikes and that this is likely to include neutralizing antibodies against conformational epitopes present in the closed conformation. We suggest that closed spikes, together with their improved stability and storage properties, may be a valuable component of refined, next-generation vaccines. IMPORTANCE Vaccines in use against SARS-CoV-2 induce immune responses against the spike protein. There is intense interest in whether the antibody response induced by vaccines will be robust against new variants, as well as in next-generation vaccines for use in previously infected or immunized individuals. We assessed the use as an immunogen of a spike protein engineered to be conformationally stabilized in the closed state where the receptor binding site is occluded. Despite occlusion of the receptor binding site, the spike induces potently neutralizing sera against multiple SARS-CoV-2 variants. Antibodies are raised against a different pattern of epitopes to those induced by other spike constructs, preferring conformational epitopes present in the closed conformation. Closed spikes, or mRNA vaccines based on their sequence, can be a valuable component of next-generation vaccines.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing , Antibodies, Viral , Epitopes , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Epitopes/chemistry , Epitopes/immunology , HEK293 Cells , Humans , Mice , Protein Stability , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL